支持跨镜头、多类别、小目标跟踪的超强实时跟踪系统PP-Tracking开源啦

支持跨镜头、多类别、小目标跟踪的超强实时跟踪系统PP-Tracking开源啦

发布时间:2021-11-29 作者:创始人

  今天给大家分享的是支持跨镜头、多类别、小目标跟踪的超强实时跟踪系统PP-Tracking开源的相关内容,下面我们来看具体详情!

  在琳琅满目的视觉应用中,对车辆、行人、飞行器等快速移动的物体进行实时跟踪及分析,可以说是突破安防、自动驾驶、智慧城市等炙手可热行业的利器。

  但要实现又快又准的持续跟踪,往往面临被检目标多、相互遮挡、图像扭曲变形、背景杂乱、视角差异大、目标小且运动速度快等产业难题。


支持跨镜头、多类别、小目标跟踪的超强实时跟踪系统PP-Tracking开源啦


  ▲视频引用公开数据集

  那如何快速获得这个能力呢?今天给大家介绍的不仅仅是单独的智能视觉算法,而是一整套多功能多场景的跟踪系统——PP-Tracking。‍

  它融合了目标检测、行人重识别、轨迹融合等核心能力,并针对性地优化和解决上述实际业务的痛点难点,提供行人车辆跟踪、跨镜头跟踪、多类别跟踪、小目标跟踪及流量计数等能力与产业应用,还支持可视化界面开发,让你快速上手、迅速落地。


支持跨镜头、多类别、小目标跟踪的超强实时跟踪系统PP-Tracking开源啦


  项目链接:https://github.com/PaddlePaddle/paddledetection

  想了解这套超强目标跟踪系统的详细结构、优势亮点及使用方法?下面带大家来快速领略下。

  功能丰富效果佳

  PP-Tracking内置DeepSORT[6]、JDE[7]与FairMOT[8]三种主流高精度多目标跟踪模型,并针对产业痛点、结合实际落地场景进行一系列拓展和优化,覆盖多类别跟踪、跨镜跟踪、流量统计等功能与应用,可谓是精度、性能、功能丰富样样俱全。

  单镜头跟踪

  单镜头下的单类别目标跟踪是指在单个镜头下,对于同一种类别的多个目标进行连续跟踪,是跟踪任务的基础。针对该任务,PP-Tracking基于端到端的One Shot高精模型FairMOT[8],替换为更轻量的骨干网络HRNetV2-W18,采用多种Tricks,如Sync_BN与EMA,保持性能的同时大幅提高了精度,并且扩大训练数据集,减小输入尺寸,最终实现服务端轻量化模型在权威数据集MOT17上精度达到MOTA 65.3,在NVIDIA Jetson NX上速度达到23.3FPS,GPU上速度可达到60FPS!同时,针对对精度要求较高的场景,PP-Tracking还提供了精度高达MOTA75.3的高精版跟踪模型。


支持跨镜头、多类别、小目标跟踪的超强实时跟踪系统PP-Tracking开源啦

  视频引用公开数据集

  多类别跟踪

  PP-Tracking不仅高性能地实现了单镜头下的单类别目标跟踪,更针对多种不同类别的目标跟踪场景,增强了特征匹配模块以适配不同类别的跟踪任务,实现跟踪类别覆盖人、自行车、小轿车、卡车、公交、三轮车等上十种目标,精准实现多种不同种类物体的同时跟踪。


支持跨镜头、多类别、小目标跟踪的超强实时跟踪系统PP-Tracking开源啦

  视频引用公开数据集


  跨镜头跟踪

  安防场景常常会涉及在多个镜头下对于目标物体的持续跟踪。当目标从一个镜头切换到另一个镜头,往往会出现目标跟丢的情况,这时,一个效果好速度快的跨镜头跟踪算法就必不可少了!PP-Tracking中提供的跨镜头跟踪能力基于DeepSORT[6]算法,采用了百度自研的轻量级模型PP-PicoDet和PP-LCNet分别作为检测模型和ReID模型,配合轨迹融合算法,保持高性能的同时也兼顾了高准确度,实现在多个镜头下紧跟目标,无论镜头如何切换、场景如何变换,也能准确跟踪目标的效果。


支持跨镜头、多类别、小目标跟踪的超强实时跟踪系统PP-Tracking开源啦

  视频引用公开数据集


  流量监测

  与此同时,针对智慧城市中的高频场景—人/车流量监测,PP-Tracking也提供了完整的解决方案,应用服务器端轻量级版FairMOT[8]模型预测得到目标轨迹与ID信息,实现动态人流/车流的实时去重计数,并支持自定义流量统计时间间隔。

  为了满足不同业务场景下的需求,如商场进出口人流监测、高速路口车流量监测等,PP-Tracking更是提供了出入口两侧流量统计方式。


支持跨镜头、多类别、小目标跟踪的超强实时跟踪系统PP-Tracking开源啦

  视频引用公开数据集


  复杂场景覆盖全

  行人、车辆跟踪

  智慧交通中,行人和车辆的场景尤为广泛,因此PP-Tracking针对行人和车辆,提供对应的预训练模型,大幅降低开发成本,节省训练时间和数据成本,实现业务场景直接推理,算法即应用的效果!不仅如此,PP-Tracking支持显示目标轨迹,更直观地辅助实现高效的路径规划分析。


支持跨镜头、多类别、小目标跟踪的超强实时跟踪系统PP-Tracking开源啦

支持跨镜头、多类别、小目标跟踪的超强实时跟踪系统PP-Tracking开源啦

视频引用公开数据集


  人头跟踪

  不仅如此,除了在日常跟踪任务中拥有极强的通用性,针对实际业务中常常出现目标遮挡严重等问题,PP-Tracking也进行了一系列优化,提供了基于FairMOT[8]训练的人头跟踪模型,并在Head Tracking 2021数据集榜单位居榜首,助力PP-Tracking灵活适配各类行人场景。


支持跨镜头、多类别、小目标跟踪的超强实时跟踪系统PP-Tracking开源啦

  视频引用公开数据集

  小目标跟踪

  针对小目标出现在大尺幅图像中的产业常见难题场景,PP-Tracking进行了一系列的优化,提供专门针对小目标跟踪的预训练模型,实现在特殊场景,如无人机等航拍场景下,也能达到较为精准的效果。


支持跨镜头、多类别、小目标跟踪的超强实时跟踪系统PP-Tracking开源啦

  视频引用公开数据集


  两种使用模式

  训练推理灵活掌握

  为了满足不同的开发需求,PP-Tracking支持两种使用方式,无论是想通过代码调用/训练模型,进行快速推理部署,还是想要零代码直接上手使用功能,PP-Tracking通通满足你!

  API代码调用:

  API简洁易用,支持模型调用、训练与推理部署,最大程度降低开发成本的前提下,灵活适配各类场景与任务。


支持跨镜头、多类别、小目标跟踪的超强实时跟踪系统PP-Tracking开源啦


  可视化开发界面:

  囊括所有功能与应用,无需任何开发,即可实现全部任务功能,便于集成于各类硬件。


支持跨镜头、多类别、小目标跟踪的超强实时跟踪系统PP-Tracking开源啦


  更贴心的是,PP-Tracking支持Python、C++两种部署语言,同时提供使用飞桨原生推理库Paddle Inference和飞桨服务化推理框架Paddle Serving的保姆级部署教程,真正意义上打通从训练、推理到部署的全流程。

  产业场景快速融合

  这么厉害的实时跟踪系统在实际落地中的表现如何呢?接下来,让我们看看PP-Tracking的实际业务落地效果吧。

  以人流量计数为例,在上海音智达公司的实际业务中,使用PP-Tracking中的服务端轻量化版FairMOT[8],结合人流量计数功能,快速实现商圈出入口的实时人流量去重计数。


支持跨镜头、多类别、小目标跟踪的超强实时跟踪系统PP-Tracking开源啦

  视频引用公开数据集


  更多智能视觉目标跟踪相关内容,百度云服务中心持续分享中!

  推荐阅读:央视新闻携手百度智能云打造首个AI手语主播

7x24小时服务热线:400-996-8756

公司地址:河南省郑州市姚砦路133号金成时代广场6号楼13层

I CP备案号:豫B2-20110005-1

公安备案号: 41010502003271

法律顾问:河南天坤律师事务所-段志刚律师