Github Star 8.5K超级好用的OCR数据合成与半自动标注工具

Github Star 8.5K超级好用的OCR数据合成与半自动标注工具

发布时间:2021-02-04 作者:未知
  今天给大家分享火爆的百度PaddleOCR数据合成与半自动标注工具Github Star 8.5K,下面我们来看具体详情!
  OCR方向的工程师,一定需要知道这个OCR开源项目:PaddleOCR。
  短短几个月,累计Star数量已超过8.5K,频频登上Github Trending日榜月榜,称它为OCR方向目前最火的repo绝对不为过。
  最近,它又带来四大新发布与升级:
  核心内容先睹为快:
  ·全新发布数据合成工具Style-Text:可以批量合成大量与目标场景类似的图像,在多个场景验证,效果均提升15%以上。
  ·全新发布半自动数据标注工具PPOCRLabel:有了它数据标注工作事半功倍,相比labelimg标注效率提升60%以上,社区小规模测试,好评如潮。
  ·多语言识别模型效果升级:在开源测试集评估,中文、英文、韩语、法语、德语、日文识别效果均优于EasyOCR。x
  ·PP-OCR开发体验再升级:支持动态图开发(训练调试更方便),静态图部署(预测效率更高),鱼与熊掌可以兼得。
  PaddleOCR历史表现回顾
  先看下PaddleOCR自去年6月开源以来,短短几个月在GitHub上的表现:
  ·6月,8.6M超轻量模型发布,GitHub Trending全球趋势榜日榜第一。
  ·8月,开源CVPR2020顶会SOTA算法,再上GitHub趋势榜单!
  ·10月,发布PP-OCR算法,开源3.5M超轻量模型,再下Paperswithcode趋势榜第一
 
Github Star 8.5K超级好用的OCR数据合成与半自动标注工具
 
  这个含金量,广大的GitHub开发者们自然懂。
  3.5M超超轻量模型的效果图大家直接看,绝对杠杠的。
 
Github Star 8.5K超级好用的OCR数据合成与半自动标注工具
 
  火车票、表格、金属铭牌、翻转图片、外语都是妥妥的。
  3.5M的模型能达到这个识别精度,绝对是良心之作了!
  传送门:https://github.com/PaddlePaddle/PaddleOCR
  那么最近的12月份更新,又给大家带来哪些惊喜呢?
  全新发布OCR数据合成工具Style-Text
  相比于传统的数据合成算法,Style-Text可以实现特殊背景下的图片风格迁移,只需要少许目标场景图像,就可以合成大量数据,效果展示如下
  1、相同背景批量数据合成
 
Github Star 8.5K超级好用的OCR数据合成与半自动标注工具
 
  2、相同文字批量数据合成
 
Github Star 8.5K超级好用的OCR数据合成与半自动标注工具
 
  3、图片分离前景背景
 
Github Star 8.5K超级好用的OCR数据合成与半自动标注工具
 
  除了拉风的效果,采用这样的合成数据和真实数据一起训练,可以显著提升特殊场景的性能指标,分别以两个场景为例:
 
Github Star 8.5K超级好用的OCR数据合成与半自动标注工具
 
  图片怎么样,绝对是黑科技了吧。
  这项能力核心算法是基于百度和华科合作研发的文本编辑算法《Editing Text in the Wild》,链接:https://arxiv.org/abs/1908.03047
  不同于常用的基于GAN的数据合成工具,Style-Text主要框架包括
  ①文本前景风格迁移模块
  ②背景抽取模块
  ③融合模块
 
Github Star 8.5K超级好用的OCR数据合成与半自动标注工具
 
  经过这样三步,就可以迅速实现图片文字风格迁移啦。
  超强OCR数据标注工具PPOCRLabel
  除了数据合成,数据标注也一直是深度学习开发者关注的重点,无论是从成本还是时间上面,提高标注效率,降低标注成本太重要了。
  PPOCRLabel通过内置高质量的PPOCR中英文超轻量预训练模型,可以实现OCR数据的高效标注。
  CPU机器运行也是完全没问题的。
  话不多说,直接看PPOCRLabel效果演示:
 
Github Star 8.5K超级好用的OCR数据合成与半自动标注工具
 
  用法也是非常的简单,标注效率提升60%-80%是妥妥的。
  只能说,真的太香了。
  最好的多语言模型效果
  简单对比一下目前主流OCR方向开源repo的核心能力:
  中英文模型性能及功能对比
 
Github Star 8.5K超级好用的OCR数据合成与半自动标注工具
 
  其中,部分多语言模型性能及功能(F1-Score)对比(仅EasyOCR提供)
 
Github Star 8.5K超级好用的OCR数据合成与半自动标注工具
 
  值得一提的是,目前已经有全球开发者通过PR或者issue的方式为PaddleOCR提供多语言的字典和语料,在PaddleOCR上已经完成了全球主流语言的广泛覆盖:包括中文简体、中文繁体、英文、法文、德文、韩文、日文、意大利文、西班牙文、葡萄牙文、俄罗斯文、阿拉伯文、印地文、维吾尔文、波斯文、乌尔都文、塞尔维亚文(latin)、欧西坦文、马拉地文、尼泊尔文、塞尔维亚文、保加利亚文、乌克兰文、白俄罗斯文、泰卢固文、卡纳达文、泰米尔文,也欢迎更多开发者可以参与共建。
  PP-OCR开发体验再升级
  动态图和静态图是深度学习框架常用的两种模式。在动态图模式下,代码编写运行方式符合Python程序员的习惯,易于调试,但在性能方面,Python执行开销较大,与C++有一定差距。
  相比动态图,静态图在部署方面更具有性能的优势。静态图程序在编译执行时,预先搭建好的神经网络可以脱离Python依赖,在C++端被重新解析执行,而且拥有整体网络结构也能进行一些网络结构的优化。
  飞桨动态图中新增了动态图转静态图的功能,支持用户使用动态图编写组网代码。预测部署时,飞桨会对用户代码进行分析,自动转换为静态图网络结构,兼顾了动态图易用性和静态图部署性能两方面优势。
  良心出品的中英文文档教程
 
Github Star 8.5K超级好用的OCR数据合成与半自动标注工具
 
  大家访问GitHub点过star之后自己体验吧:https://github.com/PaddlePaddle/PaddleOCR
  更多百度OCR数据合成与半自动标注工具,腾佑AI人工智能持续分享中!

7x24小时服务热线:400-996-8756

公司地址:河南省郑州市姚砦路133号金成时代广场6号楼13层

I CP备案号:豫B2-20110005-1

公安备案号: 41010502003271

法律顾问:河南天坤律师事务所-段志刚律师